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ABSTRACT

Under the condition that temporal rainfall is a stationary multifractal process, we
derive scaling properties of the IDF curves. We find that the IDF values have
approximately a power law dependence on duration D and return period T, with
exponents that differ from those obtained in previous studies. The scaling relations
depend to some extent on the definition of the return period. Theoretical findings are
validated through simulation.



1. INTRODUCTION

The intensity-duration-frequency (IDF) curves are standard tools of
hydrologic risk analysis and design. They are defined as follows. Let ,'  be the
annual maximum rainfall intensity in a period of duration D at a given location

and denote by LS �'� the value exceeded by ID with probability p. The IDF

curves are plots of LS �'� against D for selected return periods T = 1/p. It has

been repeatedly observed that, over a wide range of durations, the distribution

of ,' satisfies the simple-scaling relation ,'  G U+ ,U' , with H typically in the
range 0.6-0.8 (e.g. Burlando and Rosso, 1996; Menabde et al., 1999). It follows
that the IDF curves satisfy LS �'�  J�S�'�+ , where g(p) is some function of p.

A second observation is that, at least in some cases and for small p, g(p) v S�D
for some D.

The simple scaling dependence of the annual maximum intensity ID on
duration D may appear at odds with the fact that temporal rainfall is not itself a
self-similar process. Rather, the average intensity in [t, t+D], ,'
 (t), may to a
first approximation be considered multifractal; see for example Hubert et al.
(1993), Lovejoy and Schertzer (1995), Olsson et al. (1993), Menabde et al.
(1997), and Schmitt et al. (1998). Hence, a compelling theoretical problem is to
reconcile the multifractal scaling of rainfall with the self-similarity of the IDF
curves and derive the exponents H and D from characteristics of the temporal
rainfall series. Interest in these issues is not just theoretical (linking the IDF
curves to characteristics of the rainfall process and possibly to climatic and
atmospheric conditions), but also practical (extrapolation of the IDF intensities
to values of D and T beyond the range estimable from historical records,
regionalization of the IDF curves, etc.).

Recently, Benjoudi et al. (1997, 1999) have derived H and D from the
codimension function of the rainfall process. Here we make the same basic
assumptions as Benjoudi et al., but depart in some important ways from their
analysis and reach different conclusions about the scaling of the IDF curves.

2. ALTERNATIVE DEFINITIONS OF THE RETURN PERIOD

The IDF curves and their scaling properties depend to some extent on
the way the return period T is defined. Let T(D,i) be the return period of events
with average rainfall intensity i over duration D. The definition used above, T =
1/p, corresponds to taking



7��'�L�  �3>,' ! L@ (1)

where ID is the annual maximum of ,'
 �W� . Alternatively, one may relate the

return period to the marginal exceedance probability P[,'
 (t)>i] as

7��'�L�  '3>,'
 �W� ! L@ (2)

The reciprocal of 7��'�L� is the expected number of non-overlapping D

intervals in one year when ,'
 ! L . Other definitions of T are possible, for
example based on the distribution of peak above threshold or on the upcrossing
rate for the intensity level i. The IDF curves for the jth definition of the return
period T are plots of ij(Tj,D), the rainfall intensity for duration D and return
period Tj. We want to see how ij varies with D and Tj. Our analysis is based on a
large deviation property of multifractal measures, which is derived first.

3. A LARGE-DEVIATION PROPERTY OF MULTIFRACTAL

MEASURES

Consider a multiplicative cascade that starts at level 0 with a uniform
unit measure in the unit interval. Denote by b the multiplicity of the cascade (an
integer greater than 1), by B the cascade generator, by r an integer power of b,
and by HU the average measure density in a generic cascade tile of length 1/r. It
is well known (e.g. Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993)
that, for any given J,

3>HU ! UJ @ a U�F�J � (3)

where a denotes equality as r o f up to a factor that varies slowly (e.g.
logarithmically) with r and c(J) is the Legendre transform of the moment
scaling function K(q) = ORJE>%T @ . The function c(J) may be obtained
parametrically from K(q), as

J �T�  G.�T�GT � F�T�  TJ�T� �.�T� (4)



Technically, Eq. 4 holds for J d J* where J* is the value of J associated with the
moment order q* > 1 for which K(q*) = q* - 1. The form of c(J) for J > J* plays
an important role in the IDF analysis of Benjoudi et al. (1997, 1999), but not
here, since we find that what matters is the function c(J) in the range J d J*.

For the scaling analysis of the IDF curves, we need to extend Eq. 3 to
obtain the probability 3>HU ! DU J @ for any given positive number a. By usingDUJ = UJ �ORJ U D , OLPUof ORJU �D�  � , and F�J � G�  F�J � � T�J�G for small G, we

conclude that

3>HU ! DU J @  3>HU ! UJ� ORJU D @a D�T�J �U�F�J � (5)

where a denotes asymptotic equality as r o f, up to a slowly varying function
of r.

4. SCALING OF THE IDF CURVES FOR T = T2

Next we use the result in Eq. 5 to obtain the scaling properties of

i2(T2,D) for large T2. Equation 5 applies to measure densities Hr with unit

expected value. In the case of rainfall, m = E[,'
 ] is not necessarily 1.

Therefore, ,'
 has a unit-mean cascade representation of the type ,'
 =P H'R � ' , where D0 is the outer limit of the scaling regime for rainfall.

Substituting r = Do/D and HU  H'R � ' =  ,'
 �P into Eq. 5, one obtains

3>,'
 ! PD ''R§�©�¨� ·�¹�¸�
�J @ a D�T�J � ''R§�©�¨� ·�¹�¸�F�

J �
(6)

for D << Do. To see how i2 depends on D and T2, we recall from Eq. 2 that
i2(T2,D) satisfies 3>,'
 ! L� @  '� 7� ; hence, to obtain an expression for i2, one
should make the right hand side of Eq. 6 equal to ' �7� . This happens for

J  J � VXFK WKDW F�J ��  �
D  7�'R§�©�¨� ·�¹�¸�� � T�­�®�°�¯�°� (7)

where q1 = q(J1). The parameters J1 and q1 are obtained from the moment scaling
function K(q) of the rainfall process as illustrated in Figure 1.
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Figure 1 - Illustration of the IDF scaling parameters J1 and q1.

From convexity of K(q) and the conditions K(1) = 0 and K(q*) = q* - 1, it

follows that J1 d 1 d J*. With J1 and a in Eq. 7, Eq. 6 becomes

3>,'
 ! P 7�'R§�©�¨� ·�¹�¸�� � T� ''R§�©�¨� ·�¹�¸��J � @ a '7� (8)

Hence, for D << Do, i2 must scale with T2 and D as

L� v 7��� T� '�J� (9)

This scaling result differs from the relation found by Benjoudi et al. (1997,
1999).

5. SCALING OF THE IDF CURVES FOR T = T1

To obtain the scaling properties of i1(T1,D) with T1 in Eq. 1, we make an
assumption, which we have found to be accurate. Denote by 1�S�'� the

expected number of D intervals in one year when the average intensity ,'




exceeds the (1-p) fractile of the annual maximum precipitation intensity, LS �'� .
We assume that, for fixed p, 1�S�'� { 1�S� independent of D. Support for this
assumption comes from our own simulations of multifractal processes (see
below) and the well-known fact that the IDF curves based on the return periods
in Eqs. 1 and 2 are practically the same for T1 = T2 longer than about 10 years
(Chow et al., 1988).

Under this assumption, the intensities i1(T1,D) are obtained by simply
changing the return periods of the IDF curves i2(T2,D), without modifying the
curves themselves. In fact, by definition, the rainfall intensities LS �'� for

different D and given p have all the same return period T1 = 1/p. From Eq. 2 and
the assumption above, the same intensities correspond to 7�  ��1�S� ��1��� 7�� . Substitution of the last relation into Eq. 9 gives

L��7��'� v 1� �7� �ª�¬�«� º�¼�»��� � T� '�J� (10)

Since 1�S� satisfies OLPSo� 1�S�S  �, it is OLP7�of 7�7�  � , meaning that for long

return periods the IDF curves based on the definitions of T in Eqs. 1 and 2 are
the same. As we have noted above, this is true in practice for return periods as
short as 10 years or less.

6. NUMERICAL VALIDATION

To validate Eq. 9 and the assumption on 1�S�'� that led to Eq. 10, we
have performed numerical simulations using a locally multifractal model. The
model considers the following key features of temporal rainfall: (i) the power
spectrum of temporal rainfall has a breakpoint at about 2 weeks and is nearly
flat above 2 weeks; (ii) in many climates, the events that dominate the IDF
curves tend to come from a single season; and (iii) temporal rainfall displays an
alternation of wet and dry periods.

Based on these features, we have formulated the following rainfall
model. Each year is represented by a three-month long dominant season, which
in turn is partitioned into 2-week intervals. Within each 2-week interval, the
rainfall time series is an independent realization of a stationary multifractal
measure of the beta-lognormal type, with moment scaling function� � � � � �TT&�T&T. �/1 ��� E , where CE and CLN are non-negative constants



such that CE + CLN < 1. The associated IDF scaling exponents in Eqs. 9 and 10
are

J �  �&E � &/1 � � � �� � &E�&/1�T�  &/1� � &E

­�®�°�¯�°� (11)

For the validation of Eq. 9, we have simulated 400 years of rainfall at 2.3
seconds resolution using this model with &E = 0.1 and CLN = 0.15. We have then

aggregated the data to 10 minutes before further analysis. An example
simulation for a single three-month season is shown in Figure 2. For the chosen
values of &E and CLN, Eq. 11 gives J1 = 0.685 and 1/q1 = 1/2.45 = 0.408.
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Figure 2 - Simulated 10-min rainfall for a three-month season.

Figure 3 shows the IDF curves extracted from the synthetic record, for return
periods T2 = 2, 5, 10, 20, 50, and 100 years. For each given return period, the
intensity i2 is observed to have a power dependence on duration D, with an
exponent very close to the theoretical value -0.685. A significant finding is that
the theoretical scaling is very accurately satisfied over a wide range of durations
D, not just the infinitesimal durations under which Eq. 9 was derived.
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Figure 3 - IDF curves from the simulated rainfall sequence using T = T2 in Eq. 2 (T in
years). The thick solid line has the theoretical slope 0.685 and is shown for
reference.

To validate the scaling of i2 with T2, we have calculated the geometric
mean of the empirical rainfall intensities along each IDF curve in Figure 3 and
plotted the resulting value against log(T2). If Eq. 9 is correct, the plot should
have a slope of 1/q1 = 0.408. Figure 4 shows that also this theoretical scaling
relation is very closely satisfied.

Finally, we validate the assumption on 1�S�'�  by plotting the expected

number of exceedances of ip(D) in a year as a function of duration D, for
selected values of p. As Figure 5 shows, the assumption that 1�S�'� is
independent of D can be accurately made, at least for small values of p.

7. CONCLUSIONS

We have found that the IDF curves of stationary multifractal rainfall in
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Figure 4 - Relationship between intensity and return period for T = T2. The solid line
has the theoretical slope 0.408. Each open circle is the geometric average
of the empirical intensities in Figure 3 for a given value of T2.

time are simple-scaling relative to duration D and, for large return periods T,
have a power-law dependence on T. These qualitative results are in agreement
with earlier findings by Benjoudi et al. (1997, 1999). However, the scaling
exponents that we derive differ from the exponents in those earlier studies.
Specifically, we find that the negative exponent of D is the value J1 of J for
which the codimension function of temporal rainfall, c(J), is 1 and that the
exponent of T is 1/q1, where q1 is the moment order associated with J1. The
results have been validated through extensive numerical simulation.
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Figure 5 - Plots of 1�S�'� against D for different exceedance probabilities p, using

the synthetic rainfall record. 1�S�'� is the expected number of intervals

of duration D in one year when the average rainfall intensity ,'
 exceeds
the annual fractile ip(D).
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